79 research outputs found

    Vertex Cover Gets Faster and Harder on Low Degree Graphs

    Full text link
    The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem, and is a special case of the hitting set question. On the other hand, the hitting set problem, when asked in the context of induced geometric objects, often turns out to be exactly the vertex cover problem on restricted classes of graphs. In this work we explore a particular instance of such a phenomenon. We consider the problem of hitting all axis-parallel slabs induced by a point set P, and show that it is equivalent to the problem of finding a vertex cover on a graph whose edge set is the union of two Hamiltonian Paths. We show the latter problem to be NP-complete, and we also give an algorithm to find a vertex cover of size at most k, on graphs of maximum degree four, whose running time is 1.2637^k n^O(1)

    Detecting Possible Manipulators in Elections

    Full text link
    Manipulation is a problem of fundamental importance in the context of voting in which the voters exercise their votes strategically instead of voting honestly to prevent selection of an alternative that is less preferred. The Gibbard-Satterthwaite theorem shows that there is no strategy-proof voting rule that simultaneously satisfies certain combinations of desirable properties. Researchers have attempted to get around the impossibility results in several ways such as domain restriction and computational hardness of manipulation. However these approaches have been shown to have limitations. Since prevention of manipulation seems to be elusive, an interesting research direction therefore is detection of manipulation. Motivated by this, we initiate the study of detection of possible manipulators in an election. We formulate two pertinent computational problems - Coalitional Possible Manipulators (CPM) and Coalitional Possible Manipulators given Winner (CPMW), where a suspect group of voters is provided as input to compute whether they can be a potential coalition of possible manipulators. In the absence of any suspect group, we formulate two more computational problems namely Coalitional Possible Manipulators Search (CPMS), and Coalitional Possible Manipulators Search given Winner (CPMSW). We provide polynomial time algorithms for these problems, for several popular voting rules. For a few other voting rules, we show that these problems are in NP-complete. We observe that detecting manipulation maybe easy even when manipulation is hard, as seen for example, in the case of the Borda voting rule.Comment: Accepted in AAMAS 201

    On the Exact Amount of Missing Information that Makes Finding Possible Winners Hard

    Get PDF
    We consider election scenarios with incomplete information, a situation that arises often in practice. There are several models of incomplete information and accordingly, different notions of outcomes of such elections. In one well-studied model of incompleteness, the votes are given by partial orders over the candidates. In this context we can frame the problem of finding a possible winner, which involves determining whether a given candidate wins in at least one completion of a given set of partial votes for a specific voting rule. The Possible Winner problem is well-known to be NP-Complete in general, and it is in fact known to be NP-Complete for several voting rules where the number of undetermined pairs in every vote is bounded only by some constant. In this paper, we address the question of determining precisely the smallest number of undetermined pairs for which the Possible Winner problem remains NP-Complete. In particular, we find the exact values of t for which the Possible Winner problem transitions to being NP-Complete from being in P, where t is the maximum number of undetermined pairs in every vote. We demonstrate tight results for a broad subclass of scoring rules which includes all the commonly used scoring rules (such as plurality, veto, Borda, and k-approval), Copeland^alpha for every alpha in [0,1], maximin, and Bucklin voting rules. A somewhat surprising aspect of our results is that for many of these rules, the Possible Winner problem turns out to be hard even if every vote has at most one undetermined pair of candidates

    On the Complexity of Two Dots for Narrow Boards and Few Colors

    Get PDF
    Two Dots is a popular single-player puzzle video game for iOS and Android. A level of this game consists of a grid of colored dots. The player connects two or more adjacent dots, removing them from the grid and causing the remaining dots to fall, as if influenced by gravity. One special move, which is frequently a game-changer, consists of connecting a cycle of dots: this removes all the dots of the given color from the grid. The goal is to remove a certain number of dots of each color using a limited number of moves. The computational complexity of Two Dots has already been addressed in [Misra, FUN 2016], where it has been shown that the general version of the problem is NP-complete. Unfortunately, the known reductions produce Two Dots levels having both a large number of colors and many columns. This does not completely match the spirit of the game, where, on the one hand, only few colors are allowed, and on the other hand, the grid of the game has only a constant number of columns. In this paper, we partially fill this gap by assessing the computational complexity of Two Dots instances having a small number of colors or columns. More precisely, we show that Two Dots is hard even for instances involving only 3 colors or 2 columns. As a contrast, we also prove that the problem can be solved in polynomial-time on single-column instances with a constant number of goals
    corecore